6th Grade

Week of:

APRIL 6TH

WICHITA PUBLIC SCHOOLS
5th, 6th, 7th and 8th Grades

Your child should spend up to 90 minutes over the course of each day on this packet. Consider other family-friendly activities during the day such as:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal your thoughts about current situation in our community</td>
<td>Find an area in your home that is cozy and take a moment and focus on your breathing. 3 deep breathes</td>
<td>Find a Yoga video and participate as a family.</td>
<td>Help make a meal for the family.</td>
</tr>
<tr>
<td>Listen to a free audio story at stories.audible.com</td>
<td>Start your coding journey at code.org</td>
<td>Observe and discuss nature while watching an animal at explore.org/livecams</td>
<td>Write a letter or text to a friend to encourage them.</td>
</tr>
</tbody>
</table>

*All activities are optional. Parents/Guardians please practice responsibility, safety, and supervision.

For students with an Individualized Education Program (IEP) who need additional support, Parents/Guardians can refer to the Specialized Instruction and Supports webpage, contact their child’s IEP manager, and/or speak to the special education provider when you are contacted by them. Contact the IEP manager by emailing them directly or by contacting the school. The Specialized Instruction and Supports webpage can be accessed by clicking HERE or by navigating in a web browser to https://www.usd259.org/Page/17540

WICHITA PUBLIC SCHOOLS
CONTINUOUS LEARNING HOTLINE AVAILABLE
316-973-4443
MARCH 30 – MAY 21, 2020
MONDAY – FRIDAY
11:00 AM – 1:00 PM ONLY

For Multilingual Education Services (MES) support, please call (316) 866-8000 (Spanish and Proprio) or (316) 866-8003 (Vietnamese).

The Wichita Public Schools does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, sexual orientation, disability, age, veteran status or other legally protected classifications in its programs and activities.
Week of April 6, 2020

Hello Parent(s)/Guardian(s) and Middle School English Language Arts 6th Grader,

For the next seven weeks, students may participate in a variety of reading and writing activities based on their last unit of study from our new curriculum, Pearson’s *myPerspectives*. Students will improve literacy skills with content previously taught this school year. Students, this learning opportunity will strengthen your language arts skills to help prepare for next year’s ELA expectations in grades 7. Parents, it’s important for your child to discuss what s/he is reading to deepen understanding of their reading and improve their writing. Engaging in conversation with your child about what s/he is learning helps solidify literacy skills. This is not the complete unit; however, the stories and activities were carefully selected for you from the unit.

Each grade level has a genre focus, unit theme, and essential question guiding the reading and writing activities throughout the unit. By the end of the unit, students will write a final paragraph citing evidence from the texts read and answering a question prompt concerning the reading and writing activities to conclude the unit. The lessons should take no more than 45 minutes per day or approximately 3 hours and 45 minutes per week. Enjoy learning!

Grade 6 English Language Arts: April 6 – 10, 2020

Theme: Exploration
Essential Question: What drives people to explore?
Genre: Argument

<table>
<thead>
<tr>
<th>Grade 6 Unit 5 Exploration: What drives people to explore?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2: April 6-10</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6th Grade Unit 5 Exploration
Daily Planning Guide/Checklist/Additional Support

Monday, April 6

_____ Look through information on pages 400 – 401.

_____ Rate yourself on the unit goals page 402. This is where you are right now before beginning the unit.

_____ Begin working on vocabulary page 403.

Tuesday, April 7

_____ Complete the vocabulary section on page 403.

_____ Read (or have read aloud) pages 404 and 405 (Add words to the Word Network page 405 while
reading.)

_____ Complete the Word Network at the bottom of page 405.

Wednesday, April 8

_____ Re-read (or have read aloud) pages 404 and 405.

_____ Work on writing a summary as shown on page 406.

Thursday, April 9

_____ Continue and complete the written summary page 406.

_____ Begin working on Quick Write – jot down notes on things to explore on this earth. Should kids today be encouraged to become explorers? Page 407.

Friday, April 10

_____ Complete the Evidence Log on page 407.

_____ Summarize your point of view (1 sentence) from the Evidence Log.

_____ Congratulations!!! You’ve completed Week 2!!! You’re awesome!!!
Exploration

The road to the unknown can be dangerous and challenging, but people continue to explore it.

Discuss It Why might explorers want to discover unknown places?
Write your response before sharing your ideas.
UNIT 5
UNIT INTRODUCTION

ESSENTIAL QUESTION:

What drives people to explore?

<table>
<thead>
<tr>
<th>WHOLE-CLASS LEARNING</th>
<th>SMALL-GROUP LEARNING</th>
<th>INDEPENDENT LEARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCHOR TEXT: MEMOIR</td>
<td>NEWS ARTICLE</td>
<td>OPINION PIECE</td>
</tr>
<tr>
<td>from A Long Way Home Saroo Brierley</td>
<td>Mission Twinpossible TIME For Kids</td>
<td>Mars Can Wait. Oceans Can’t. Amitai Etzioni</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA: VIDEO</th>
<th>EPIC RETELLING</th>
<th>NONFICTION NARRATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBC Science Club: All About Exploration narrated by Dara O Briain</td>
<td>from Tales From the Odyssey Mary Pope Osborne</td>
<td>from Shipwreck at the Bottom of the World Jennifer Armstrong</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLOG</th>
<th>HISTORICAL FICTION</th>
<th>EXPOSITORY NONFICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>To the Top of Everest Samantha Larson</td>
<td>from Sacajawea Joseph Bruchac</td>
<td>The Legacy of Arctic Explorer Matthew Henson James Mills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA: GRAPHIC NOVEL</th>
<th>INFORMATIVE ARTICLE</th>
<th>NONFICTION NARRATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>from Lewis & Clark Nick Bertozzi</td>
<td>Should Polar Tourism Be Allowed? Emily Goldberg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE TASK</th>
<th>PERFORMANCE TASK</th>
<th>PERFORMANCE-BASED ASSESSMENT PREP</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITING FOCUS:</td>
<td>SPEAKING AND LISTENING FOCUS:</td>
<td>Review Evidence for an Argument</td>
</tr>
<tr>
<td>Write an Argument</td>
<td>Present an Advertisement</td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE-BASED ASSESSMENT

Argument: Essay and Speech

PROMPT:

Should kids today be encouraged to become explorers?
Unit Goals
Throughout this unit, you will deepen your understanding of exploration by reading, writing, speaking, listening, and presenting. These goals will help you succeed on the Unit Performance-Based Assessment.

Rate how well you meet these goals right now. You will revisit your ratings later when you reflect on your growth during this unit.

<table>
<thead>
<tr>
<th>Scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOT AT ALL WELL</td>
<td>NOT VERY WELL</td>
<td>SOMEWHAT WELL</td>
<td>VERY WELL</td>
<td>EXTREMELY WELL</td>
</tr>
</tbody>
</table>

READING GOALS

- Evaluate written arguments by analyzing how authors state and support their claims.

- Expand your knowledge and use of academic and concept vocabulary.

WRITING AND RESEARCH GOALS

- Write an essay in which you effectively incorporate the key elements of an argument.

- Conduct research projects of various lengths to explore a topic and clarify meaning.

LANGUAGE GOAL

- Correct errors with verbs.

SPEAKING AND LISTENING GOALS

- Engage in collaborative discussions, build on the ideas of others, and express your own ideas clearly.

- Integrate audio, visuals, and text in presentations.

STANDARDS

Language
Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases; gather vocabulary knowledge when considering a word or phrase important to comprehension or expression.
Academic Vocabulary: Argument

Understanding and using academic terms can help you read, write, and speak with precision and clarity. Here are five academic words that will be useful in this unit as you analyze and write arguments.

Complete the chart.

1. Review each word, its root, and the mentor sentences.
2. Use the information and your own knowledge to predict the meaning of each word.
3. For each word, list at least two related words.
4. Refer to the dictionary or other resources if needed.

<table>
<thead>
<tr>
<th>WORD</th>
<th>MENTOR SENTENCES</th>
<th>PREDICT MEANING</th>
<th>RELATED WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>1. I don’t think she liked the story because she had many critical comments.</td>
<td></td>
<td>critic; critically</td>
</tr>
<tr>
<td></td>
<td>2. It is critical to follow the steps exactly, otherwise the experiment might fail.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>assume</td>
<td>1. If you get the leash, the puppy will assume you’re taking him for a walk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Jon won the election and will assume the role of mayor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compel</td>
<td>1. His disregard of the rules may compel the group to dismiss him.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. In the movie, the bad guy tries to compel the hero to give up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>valid</td>
<td>1. You need a valid password to log in to the network.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. If you want to convince me, you had better use valid reasons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coherent</td>
<td>1. Present your information in a clear, coherent order so it is easy to understand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Sam’s speech was coherent because he used clear logic and evidence.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What on Earth Is Left to Explore?

At the beginning of the 1800s, the United States was a young country. Most people lived in small towns clustered on the Atlantic coast. To the west lay an entire continent, full of mystery and promise.

Government leaders believed that exploration of the continent was important. Exploration would bring knowledge and resources. Urged on by President Thomas Jefferson, Congress funded a small expedition to explore the lands west of the Mississippi River. The Lewis and Clark expedition became one of the most famous exploratory journeys in history.

In the modern world, the idea of exploration has changed. Cars, trains, and airplanes have made the world seem much smaller. People seem to be everywhere. Thousands have climbed Mount Everest, the world’s highest mountain. There are even people living in Antarctica, the world’s coldest continent. In addition, the Internet allows people to visit faraway places through the screens of their computers. Given these changes, some people may ask whether exploration matters anymore. Is there anything left to explore? The answer is simple: Exploration matters as much today as it ever has.

Let’s start with ocean exploration. It is true that much of Earth has been visited and charted. However, we should remember that people actually live on less than twenty percent of the planet. We inhabit the land, but Earth is mostly ocean. Vast stretches of the
oceans are hidden under miles of water. The little we do know about these secret places is fascinating. For example, almost a quarter of Earth is made up of a single mountain range. It just happens to be under the sea! Consider the other wonders we might find as we explore.

Ocean exploration might help us solve tough problems. For example, it might lead to new food sources for the planet’s growing population. It may also help us find ways to slow damage to the environment. These types of problems threaten all of us, and we need solutions. They make the need for ocean exploration more important than ever.

Space exploration is another area of great importance. Human beings have always been interested in the skies. We are curious about the stars and planets and the possibility that they hold other intelligent life. Satisfying that curiosity is one good reason to explore space. Another reason is that by exploring beyond Earth, we will answer essential questions about the history of our solar system and of the universe itself. This will help us understand our own planet and ourselves better. Human exploration of space also has practical benefits. According to NASA (National Aeronautics and Space Administration), space exploration pushes us to “expand technology, create new industries, and help to foster a peaceful connection with other nations.”

Lewis and Clark did not know what they would find as they set out on their journey. They only knew that they would have an adventure. In the end, their efforts added to the country’s territory and to people’s knowledge and understanding. The results of exploration may not always be that impressive, but that may not be the point. The need to explore and extend the boundaries of knowledge remains vital and should continue.

WORD NETWORK FOR EXPLORATION

Vocabulary A Word Network is a collection of words related to a topic. As you read the selections in this unit, identify interesting words related to the idea of exploration and add them to your Word Network. For example, you might begin by adding words from the Launch Text, such as *expedition*, *wilderness*, and *curiosity*. Continue to add words as you complete this unit.

Tool Kit Word Network Model
Summary
Write a summary of “What on Earth Is Left to Explore?” A summary is a concise, complete, and accurate overview of a text. It should not include a statement of your opinion or an analysis.

Launch Activity
Four-Corner Debate Consider this statement: There is nothing left on Earth to explore. Decide your position and check one of the boxes. Then, briefly note why you feel this way.

☐ Strongly Agree ☐ Agree ☐ Disagree ☐ Strongly Disagree

- Each corner of the classroom represents one position on the question. Go to the corner of the room that represents your position. Briefly discuss reasons for your position with the others in your corner. Make a list of three strong reasons.
- Start off the debate by stating your position and one reason. Then, go around the room, presenting positions and reasons.
- If you change your mind as the debate continues, move to the corner that represents your new position. Then, explain why your thinking changed.
QuickWrite

Consider class discussions, the video, and the Launch Text as you think about the prompt. Record your first thoughts here.

PROMPT: Should kids today be encouraged to become explorers?

Review your QuickWrite. Summarize your point of view in one sentence to record in your Evidence Log. Then, record evidence from “What on Earth Is Left to Explore?” that supports your point of view.

After each selection, you will continue to use your Evidence Log to record the evidence you gather and the connections you make. This graphic shows what your Evidence Log looks like.

Tool Kit
Evidence Log Model

<table>
<thead>
<tr>
<th>Title of Text: ___________________________</th>
<th>Date: ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTION TO PROMPT</td>
<td>TEXT EVIDENCE/DETAILS</td>
</tr>
<tr>
<td>How does this text change or add to my thinking?</td>
<td>Date: ________</td>
</tr>
</tbody>
</table>
Review Topic: Multi-Digit Computation (6.NS.2-3)

A. Convert each fraction to a decimal.

1. \(\frac{41}{50}\)
2. \(\frac{2}{5}\)
3. \(\frac{18}{25}\)
4. \(\frac{88}{100}\)
5. \(\frac{1}{4}\)
6. \(\frac{13}{20}\)

Remember: We can convert fractions into decimals by dividing the numerator by the denominator.

Example: To convert the fraction \(\frac{18}{33}\) into a decimal, we use division: \(18 \div 33\)

II. Adding and Subtracting Decimals

A. Calculate each sum or difference.

1. \(34.87 + 12.01 + 25.92\)
2. \(16.09 + 15.28 + 35.91\)
3. \(47.15 - 10.09\)
4. \(135.826 - 57.12\)
5. \(12.89 + 7.45 - 3.005\)
6. \(68.52 - 12.708 + 3.92\)
B. Solve each problem.

1. Cristina wants to purchase four items at the sporting goods store. The items she wants to buy are soccer cleats for $24.99, shin guards for $12.99, soccer socks for $4.49, and a soccer ball for $19.95. How much will the four items cost?

2. Cisco wants to purchase three items at the sporting goods store. The items he wants to buy are football pants for $21.99, football pads for $25.49, and football cleats for $27.95. How much will the three items cost?

3. Jada and Tonya ran a 400-meter race. Jada ran the race in 75.2 seconds. Tonya ran the race in 69.07 seconds. How much faster did Tonya run the race?

4. Kata wants to purchase three items at a department store. The items she wants to buy are jeans for $24.99, a T-shirt for $14.99 and a pair of earrings for $7.49. If Kata gives the cashier $50, how much change will she get?

5. Deon, Jerome, Lamar, and Terell are practicing for the meter relay race. The school record for the race is 49.6 seconds. The fastest time that each boy ran a 100-meter sprint in practice is shown in the table. If each of the boys can run their best 100-meter sprint during the race, can they beat the school record?

<table>
<thead>
<tr>
<th>Boy</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deon</td>
<td>11.9</td>
</tr>
<tr>
<td>Jerome</td>
<td>12.6</td>
</tr>
<tr>
<td>Lamar</td>
<td>12.52</td>
</tr>
<tr>
<td>Terell</td>
<td>11.95</td>
</tr>
</tbody>
</table>

6. Eva, Sofia, and Maria are practicing for the 50-yard freestyle swimming race. The school record for the race is 28.93 seconds. The fastest time that each girl swam the 50-yard race in practice is shown in the table.

<table>
<thead>
<tr>
<th>Girl</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>29.76</td>
</tr>
<tr>
<td>Sofia</td>
<td>31.3</td>
</tr>
<tr>
<td>Maria</td>
<td>30.02</td>
</tr>
</tbody>
</table>

How much faster must each girl swim to tie the school record?
C. Determine each product.

1. \(0.3 \times 0.4\)

2. \(0.7 \times 0.6\)

3. \(0.1 \times 0.8\)

4. \(0.2 \times 0.2\)

5. \(0.5 \times 0.7\)

6. \(0.8 \times 0.9\)

F. Determine each quotient.

1. \(0.63 \div 0.9\)

2. \(0.20 \div 0.4\)

3. \(0.24 \div 0.6\)

4. \(0.64 \div 0.8\)

5. \(0.04 \div 0.4\)

6. \(0.16 \div 0.2\)
For each question, write the problem in decimal form, then determine the quotient. Then write your answer in word-form in the blank.

1. 36 hundredths ÷ 9 tenths = 4 tenths
 36 hundredths = 0.36 9 tenths = 0.9
 So, the problem would be written as: 0.36 ÷ 0.9 = 0.4

2. 49 hundredths ÷ 7 tenths = __________

3. 10 hundredths ÷ 5 tenths = __________

4. 24 hundredths ÷ 3 tenths = __________

5. 12 hundredths ÷ 2 tenths = __________

6. 1 hundredth ÷ 1 tenth = __________

Review Topic—Calculating the surface area and volume of various figures (6.G.1)

Remember
The volume of a rectangular prism is a product of its length, width, and height:
\[V = l \cdot w \cdot h. \]

VI. Calculating Volume of Right Prisms
A. Determine the volume of each right rectangular prism.

1. 4.2 cm
 25.2 cm
 15.8 cm

2. 2.5 in.
 9.4 in.
 7.4 in.
Given the volume, determine the unknown measure.

1. Volume = 10.08 cubic centimeters

2. Volume = 869.466 cubic centimeters
3. Volume = 1011.2 cubic inches

4. Volume = 6708 cubic feet

Remember
The surface area of a polyhedron is the sum of all the areas of the faces of the polyhedron.

A. Determine the surface area of each right rectangular prism.

1. 4.2 cm
 25.2 cm
 15.8 cm

2. 2.5 in.
 7.4 in.
 9.4 in.
Stretch Your Thinking! Determine the volume and surface area of the composite figure shown below.
Standard: 6.NS.2-3

Topic:
- Convert Fractions to Decimals
- Add and Subtract Decimals
- Multiply and Divide Decimals

Supports:
- Multiplication Chart
- Video to Activate Prior Knowledge

Standard: 6.G.1

Topic:
- Volume of Right Prisms
- Surface Area of Right Prisms

Supports:
- Multiplication Chart
- Formulas
- Video to Activate Prior Knowledge

6.G.1 Formulas
- Volume = length \times width \times height
- Area = length \times width
- Surface Area = find the area of each side of the figure, then add all the areas together

General Accommodations:
- Read aloud all text
- Use a calculator
- Reduce the number of problems to complete if they are the same type
- Graph paper (or turn notebook paper lengthwise) to ensure alignment of decimals
Review Topic: Multi-Digit Computation (6.NS.2-3)

A. Convert each fraction to a decimal.

1. \(\frac{41}{50} \)
2. \(\frac{2}{5} \)
3. \(\frac{18}{25} \)
4. \(\frac{88}{100} \)
5. \(\frac{1}{4} \)
6. \(\frac{13}{20} \)

Remember: We can convert fractions into decimals by dividing the numerator by the denominator.

Example: To convert the fraction \(\frac{18}{33} \) into a decimal, we use division: \(18 \div 33 \)

II. Adding and Subtracting Decimals

A. Calculate each sum or difference.

1. \(34.87 + 12.01 + 25.92 \)
2. \(16.09 + 15.28 + 35.91 \)
3. \(47.15 - 10.09 \)
4. \(135.826 - 57.12 \)
5. \(12.89 + 7.45 - 3.005 \)
6. \(68.52 - 12.708 + 3.92 \)
B. Solve each problem.

1. Cristina wants to purchase four items at the sporting goods store. The items she wants to buy are soccer cleats for $24.99, shin guards for $12.99, soccer socks for $4.49, and a soccer ball for $19.95. How much will the four items cost?

2. Cisco wants to purchase three items at the sporting goods store. The items he wants to buy are football pants for $21.99, football pads for $25.49, and football cleats for $27.95. How much will the three items cost?

3. Jada and Tonya ran a 400-meter race. Jada ran the race in 75.2 seconds. Tonya ran the race in 69.07 seconds. How much faster did Tonya run the race?

4. Kata wants to purchase three items at a department store. The items she wants to buy are jeans for $24.99, a T-shirt for $14.99 and a pair of earrings for $7.49. If Kata gives the cashier $50, how much change will she get?

5. Deon, Jerome, Lamar, and Terell are practicing for the meter relay race. The school record for the race is 49.6 seconds. The fastest time that each boy ran a 100-meter sprint in practice is shown in the table. If each of the boys can run their best 100-meter sprint during the race, can they beat the school record?

<table>
<thead>
<tr>
<th>Boy</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deon</td>
<td>11.9</td>
</tr>
<tr>
<td>Jerome</td>
<td>12.6</td>
</tr>
<tr>
<td>Lamar</td>
<td>12.52</td>
</tr>
<tr>
<td>Terell</td>
<td>11.95</td>
</tr>
</tbody>
</table>

6. Eva, Sofia, and Maria are practicing for the 50-yard freestyle swimming race. The school record for the race is 28.93 seconds. The fastest time that each girl swam the 50-yard race in practice is shown in the table.

<table>
<thead>
<tr>
<th>Girl</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>29.76</td>
</tr>
<tr>
<td>Sofia</td>
<td>31.3</td>
</tr>
<tr>
<td>Maria</td>
<td>30.02</td>
</tr>
</tbody>
</table>

How much faster must each girl swim to tie the school record?
C. Determine each product.
1. 0.3×0.4
2. 0.7×0.6
3. 0.1×0.8
4. 0.2×0.2
5. 0.5×0.7
6. 0.8×0.9

F. Determine each quotient.
1. $0.63 \div 0.9$
2. $0.20 \div 0.4$
3. $0.24 \div 0.6$
4. $0.64 \div 0.8$
5. $0.04 \div 0.4$
6. $0.16 \div 0.2$
For each question, write the problem in decimal form, then determine the quotient. Then write your answer in word-form in the blank.

1. 36 hundredths ÷ 9 tenths = \text{4 tenths}

36 hundredths = 0.36 \hspace{1cm} 9 tenths = 0.9

So, the problem would be written as: \(0.36 \div 0.9 = 0.4\)

3. 10 hundredths ÷ 5 tenths = \underline{} \hspace{1cm} 4. 24 hundredths ÷ 3 tenths = \underline{}

5. 12 hundredths ÷ 2 tenths = \underline{} \hspace{1cm} 6. 1 hundredth ÷ 1 tenth = \underline{}

Review Topic: Working With Ratios (6.RP.1, 6.RP.3)

Two ways to describe ratios are **part-to-part** and **part-to-whole** relationships. Part-to-part ratios compare two individual quantities, while part-to-whole ratios compare one of the parts to the total number of pieces.

For Example:

From the model, you can make comparisons of the different quantities.

- blue parts to yellow parts
- yellow parts to blue parts
- blue parts to total parts
- yellow parts to total parts

Each comparison is called a ratio. A ratio is a comparison of two quantities that uses division. The first two comparisons are part-to-part ratios because you are comparing the individual quantities. The last two comparisons are part-to-whole ratios because you are comparing one of the parts (either blue or yellow) to the total number of parts.

Analyze each statement. Determine whether a part : part or a part : whole relationship exists. Explain your reasoning.

a. There are 9 girls for every 2 boys in art class.
b. Three out of every five students in art class will help paint the mural in the library.

c. There are 3 blueberry muffins to every bran muffin in a variety pack.

d. Of the 30 students in chorus, 14 of them play the piano.

e. The students planted 22 yellow daffodils and 10 white daffodils.

C. Write a part-to-part and a part-to-whole ratio for each problem situation.

1. Of the 200 students surveyed in 5th grade, 120 prefer bananas and 80 prefer apples.

 Part: Part – (comparing two PARTS) — \[
 \frac{120 \text{ banana}}{80 \text{ apple}}
 \]

 Part: Whole – (comparing to the TOTAL) — \[
 \frac{80 \text{ apple}}{200 \text{ students}}
 \]

3. Of the 100 students surveyed, 53 prefer to watch football and 42 prefer to watch baseball.

4. Of the 100 students surveyed, 42 prefer to play basketball and 28 prefer to play hockey.

5. Kata’s movie collection consists of 45 action movies and 31 comedy movies.

6. Juanita received a bouquet of 2 dozen roses. In the bouquet, 12 were red and 12 were pink.
III. Problem Solving with Equivalent Ratios and Rates using Tables

A. Complete each ratio table. Show your calculations.

1. Yellow paint (oz) | 8 | 16
 Blue paint (oz) | 4 | 8 | 16

2. Yellow paint (oz) | 1 | 2 | 10
 Red paint (oz) | 6 | 60

Hint: Use the one given ratio to solve for the rest of the table.

We are given \(\frac{8}{16} \) yellow paint. In our table, how could the yellow paint go from 8 to 16? (Multiply by 2) So, if we multiply our 16 blue paint by 2 also, we will have the missing portion in our table. Use this reasoning on the rest of the table.

3. Red paint (oz) | 1 | 50 | 100
 Blue paint (oz) | 20 | 400

4. Green paint (oz) | 15 | 30
 White paint (oz) | 5 | 25 | 75

5. White paint (oz) | 2 | 6 | 8
 Red paint (oz) | 3 | 6 | 36

6. White paint (oz) | 1 | 3 | 30 | 40 | 60
 Purple paint (oz)| 1 | 3 | 30 | 40 | 60

IV. Problem Solving with Equivalent Ratios and Rates using Graphs

A. Create a graph that represents the values shown in each ratio table.

1. Weight (pounds) | X | 1 | 2 | 4 | 5
 Cost (dollars) | Y | 3 | 6 | 12 | 15

Remember: When graphing, the x value moves on the x-axis (right) and the y value moves on the y-axis (up)
B. Use the given graph to answer each question.

1. Serena is driving to the mountains for a summer camping trip. She is traveling at a constant rate of 45 miles per hour. The graph shows the ratio time : distance. How far has Serena traveled after 4 hours?

2. Cisco is exercising. The graph shows the ratio calories burned : time for Cisco. How many calories did Cisco burn in 30 minutes?

3. Manuel is biking at a constant rate. The graph shows the ratio time : distance. How long did it take Manuel to bike 4 miles?

4. Jose is climbing a challenging section of a mountain. The graph shows the ratio time : distance climbed. How far did Jose climb after 10 minutes?